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Purpose of review

Since its introduction in 1982, transcranial Doppler ultrasonography has become an

important diagnostic and monitoring tool in patients with surgical disease. It has

applications in the perioperative period, as well as in the intensive care unit. It is

therefore appropriate for the anesthesiologist to maintain an understanding of its current

utility.

Recent findings

Transcranial Doppler has an established role in diagnosing cerebral vasospasm in

patients with aneurysmal subarachnoid hemorrhage and for guiding transfusion therapy

in children with sickle cell disease. It has application in the preoperative evaluation of

patients with cerebrovascular disease, as well as that of an intraoperative monitor in

carotid endarterectomy and carotid stenting. It is useful for detecting right-to-left shunts

in settings in which transesophageal echocardiography is not desirable. Its value in

settings such as traumatic brain injury, hepatic failure, and migraine headache has yet to

be fully clarified.

Summary

Although there are several settings in which transcranial Doppler has well established

usefulness, there are many more in which it is likely valuable, such as traumatic

brain injury, ischemic stroke, and fulminant hepatic failure. Further research is needed

in these fields to elucidate the exact role for transcranial Doppler.
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Introduction
Transcranial Doppler ultrasonography (TCD) was intro-

duced by Aaslid et al. [1] to measure blood flow velocity in

the cerebral arteries. As a monitor and diagnostic tool, it

has application in the perioperative period and in the

intensive care unit. It is essential that the anesthesiolo-

gist, particularly the neuroanesthesiologist and intensi-

vist, stays abreast of its current uses.

An overview of TCD will provide a basis for under-

standing its diverse applications. Except in certain cir-

cumstances, the diameter of basal cerebral arteries

remains fixed. Therefore, the velocity of flow through

those vessels is proportional to the volume of flow.

Although absolute flow cannot be determined, relative

changes in flow can be detected. In addition, TCD yields

a flow velocity waveform that provides information

regarding the vascular resistance, as well as the presence

of turbulence or emboli.
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0952-7907 � 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins
Ischemic stroke and clot lysis
Although digital subtraction angiography (DSA) remains

the gold standard for establishing the presence and

location of a vascular occlusion when acute ischemic stroke

is suspected, a combined approach to this patient using

both TCD and carotid duplex has a high sensitivity and

specificity for detecting lesions amenable for intervention

[2]. In a setting in which appropriately trained personnel

are available, such a diagnostic approach could bolster

confidence in the diagnosis without the use of DSA, while

allowing quick intervention with thrombolytic therapy.

Ischemic stroke is the only setting in which TCD also has

a therapeutic function. The Combined Lysis of Throm-

bus in Brain Ischemia Using Transcranial Ultrasound and

Systemic tPA (CLOTBUST) trial demonstrated that

patients who underwent continuous TCD monitoring

of the lesion during thrombolysis had a higher rate of

early recanalization, with a trend toward better recovery,
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presumably due to better exposure of the thrombus to

thrombolytic [3,4]. Concomitant administration of intra-

venous (i.v.) microbubbles during thrombolysis with

TCD monitoring further increases the rate of recanaliza-

tion [5]. Although standard TCD with 2 mHz ultrasound

appears safe when used for this purpose, low frequency

ultrasound, which has less energy loss as it penetrates

the brain tissue, does not. One trial was stopped early

because of an increased incidence of hemorrhage in

patients treated with tissue plasminogen activator

(tPA) and 300 kHz ultrasound [6]. As continuous monitor-

ing of the occlusion with standard TCD confers benefit,

particularly with more distal lesions in the middle

cerebral artery (MCA), this therapy should be considered

when available [7��].
Preventing stroke
As stroke entails irreversible brain injury, primary pre-

vention is essential to reduce its burden. TCD has an

established role in stroke prevention for children with

sickle cell disease, and its role in adult stroke prevention

is becoming increasingly important.

In children with sickle cell disease, the vascular changes

that lead to the stroke occur over time; flow velocity

progressively increases prior to stroke [8]. One study

demonstrated that a mean flow velocity of at least

200 cm/s in the internal carotid artery (ICA) or MCA

was strongly associated with stroke [9]. The incidence

of stroke can be reduced through periodic transfusion

therapy to lower the hemoglobin S concentration below

30% [10]. Screening of sickle cell children with TCD

between years 2 and 16 is now standard practice.

Although the ideal frequency for screening has not been

established, it appears that a child with abnormal

velocities should continue to receive transfusions to

sustain stroke reduction [11,12�].

In adults with large vessel cerebrovascular disease (car-

otid and MCA stenosis), emboli detectable with TCD

(MESs or microembolic signals) have an established

association with stroke, recurrent stroke, and transient

ischemic attack (TIA) [13–15,16�]. As an omen of future

stroke, MESs also provide a target for therapeutic inter-

vention. A study evaluating the efficacy of clopidogrel

and aspirin in combination versus aspirin alone for pre-

vention of ischemic events in recently symptomatic

carotid stenosis found that combination therapy was more

effective in decreasing MES [17]. As this study was not

powered to detect a clinical difference, that is, a decrease

in TIA or stroke, we do not know whether elimination of

MES is an appropriate goal for therapy. While the debate

over the role of MES-guided therapy in stroke prevention

is ongoing, a larger study to clarify this point would be

welcome [18].
opyright © Lippincott Williams & Wilkins. Unauth
Perioperative use in carotid artery disease
Carotid endarterectomy (CEA) reduces stroke rate in

patients with symptomatic carotid stenosis more than/

equal to 70% and, to a lesser extent, in patients with 50–

69% stenosis [19,20]. In asymptomatic disease, the

benefit of CEA over medical therapy is less apparent

and dependent upon the incidence of perioperative

stroke [21,22]. Medical therapy has traditionally con-

sisted of aspirin alone, but with advances in medical

therapy, including statins, additional antiplatelet agents,

and antihypertensive therapy, the margin of benefit of

surgery may be even less [23]. It is therefore critical to

determine who will benefit from surgery, and TCD has a

role in this process.

Stroke from carotid stenosis may be heralded by MES in

patients with asymptomatic disease. In asymptomatic

patients with microemboli, 1-year stroke rate is 15.6%,

while it is 1% for those without [24]. Owing to the risk of

surgical morbidity that lies between these two numbers,

TCD could be used to direct only those patients with

MES to CEA. Such a management technique needs

prospective validation.

Although carotid stenosis rarely causes morbidity due to

hemodynamic compromise from the stenosis itself, sub-

stantive research into risk for stroke has paradoxically

focused on vasomotor reactivity of the cerebral vascula-

ture. Evaluating vasomotor reactivity, or CO2 reactivity of

cerebral blood flow, entails a TCD study in which flow

velocities are measured as arterial CO2 tension is allowed

to rise. When flow velocities fail to rise significantly with

an increase in CO2, vasomotor reactivity is said to

be exhausted.

Interestingly, exhausted vasomotor reactivity is associated

with subsequent stroke in patients with asymptomatic

stenosis or occlusion [25,26]. Other evidence indicates

that the vasomotor reactivity is an indicator of the quality

of vascular collaterals [27]. Selecting patients for medical or

surgical therapy based on their vasomotor reserve is an

attractive management strategy but one that lacks pro-

spective analysis regarding its efficacy and safety.

In the setting of complete carotid occlusion, in which risk

of further stroke is substantial, CEA is not an option.

Vascular bypass procedures creating an anastamosis

between the external and internal carotid arteries (exter-

nal carotid/internal carotid bypass) have been used in the

past. This procedure was shown not to prevent sub-

sequent ischemic stroke, however [28]. Recent criticism

of patient selection in this study has renewed interest in

external carotid/internal carotid bypass surgery, with the

suggestion that surgery may yet benefit those with

exhausted vasomotor reactivity [29].
orized reproduction of this article is prohibited.
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For patients undergoing CEA, TCD has a useful role as a

monitor. Although regional anesthesia with ongoing

neurological assessment may obviate the need for

additional monitoring, CEA is frequently performed

under general anesthesia in which further monitoring

is desired. Whereas most monitors are used to detect

cross-clamp ischemia, TCD is unique in its ability

to detect other events known to produce neurological

deficit, including postoperative thrombosis, intraopera-

tive and postoperative embolism, intraoperative ische-

mia, and postoperative hyperperfusion [30].

Halsey [31] attempted to define the role for TCD as a

monitor for cross-clamp ischemia. In this study, ischemia

developing during occlusion of the carotid artery was

considered severe if mean flow velocity in the MCA

dropped below 15% of baseline and mild if it dropped

within 16–40% of baseline. This study demonstrated

the significant risk of stroke with shunting (presumably

due to embolic events) and showed that the benefit of the

shunt was justified only in severe ischemia. More recent

studies have debated the appropriate threshold of flow

velocity at which a shunt is appropriate; a drop of 60–70%

from baseline appears to be tolerated by many patients,

whereas a recent study has advocated a more conservative

threshold of approximately 50% [32,33��]. In addition to

cross-clamp ischemia, TCD is able to detect shunt mal-

function and intraoperative emboli, which may occur

during shunt placement, surgical dissection, and wound

closure [34].

Stroke that occurs in the early post-CEA period is thought

to be due to early carotid thrombosis and may be pre-

ceded by MES [35]. Naylor et al. [36] demonstrated good

results in stroke reduction by titrating dextran therapy to

a reduction of TCD-detected MES in the postoperative

period.

Approximately 1% of patients may develop hyperperfu-

sion syndrome following CEA, resulting in cerebral

hemorrhage [37]. Although it is likely a multifactorial

phenomenon, Komoribayashi et al. [38] demonstrated that

its occurrence correlates with both preoperative exhaus-

tion of cerebrovascular reserve as well as intraoperative

ischemia. Whereas most patients experience a temporary

increase in flow velocities as measured by TCD following

release of the cross-clamp, these patients remain elevated.

Flow velocity may be 30–230% over baseline [39]. Symp-

toms include ipsilateral headache, facial and eye pain,

seizures, and focal neurological deficit, due to either

cerebral edema or hemorrhage. Judicious blood pressure

management may be useful to minimize the risk of hemor-

rhage in this setting [40��]. Owing to the possibility of

hyperperfusion occuring at normal systemic pressures,

mild relative hypotension may be necessary, and TCD

guidance of therapy is prudent.
opyright © Lippincott Williams & Wilkins. Unautho
Carotid stenting has become a viable alternative to CEA

for treatment of carotid stenosis. A discussion of the

indication for a stent over surgical intervention is

beyond the scope of this review. TCD does serve a role

in this percutaneous procedure, which entails many

risks similar to CEA, specifically neurologic and cardiac

complications. Neurologic deficit following stent

deployment has been associated with macroembolism,

multiple microemboli, air embolism, as well as angio-

plasty-induced asystole and prolonged hypotension with

MCA flow velocity reduction more than 70% [41]. One

study found that, in the presence of microemboli, MCA

flow velocity was inversely associated with TIA and

stroke [42]. Patients who suffered neurological deficit

had an average flow velocity of 36 cm/s as compared

with 48 cm/s in the group without deficit. At this point,

TCD seems most appropriate as a tool to assess

improvement of stenting technique with respect to

embolic load.
Race and cerebrovascular disease
Among persons of Asian and African descent, intracranial

stenosis is more common than carotid disease as the

cause of stroke [43]. Wong et al. [44] found that, in

Chinese patients presenting with acute cerebral ische-

mia, the number of intracranial stenoses correlated with

the 6-month risk of further vascular events or death. This

study highlights the need to perform a detailed TCD

examination on patients with stroke, particularly those of

Asian and African descent.
Intraoperative monitoring
In addition to CEA, TCD has been applied to other

surgical procedures for intraoperative monitoring. In

particular, cardiac surgery with cardiopulmonary bypass

has been an area of research with TCD. Use of TCD

allows guided management of perfusion pressure to

maintain appropriate cerebral blood flow velocities. No

data exist relating this type of management to outcome,

however. TCD does allow detection of cerebral emboli

during bypass surgery [45]. The embolic load has been

associated with postoperative neuropsychological dys-

function [46]. In addition, renal dysfunction is a known

complication of bypass surgery that is also associated with

embolic load as detected by TCD [47]. One must inter-

pret such a finding cautiously, as there is likely a positive

correlation between emboli to the brain and those to the

kidneys, but this assumption is not proven.

Surgical repair of type A aortic dissection has modest

outcome data supporting the use of TCD for intraopera-

tive management with retrograde cerebral perfusion [48].

In this study, neurologic outcome was improved by

ensuring adequate cerebral perfusion with TCD.
rized reproduction of this article is prohibited.
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Patent foramen ovale
Right-to-left shunt, typically via a patent foramen ovale

(PFO), is a risk factor for stroke [49,50]. Patients who

suffer a stroke without obvious causes should undergo an

evaluation for a PFO or other shunt. Although the gold

standard for detecting a PFO is transesophageal echo-

cardiography (TEE), TCD has been employed for this

purpose. Bilateral MCA flow velocity monitoring during

an i.v. injection of agitated isotonic saline has good

efficacy in the detection of right-to-left shunt. A con-

comitant Valsalva maneuver improves the sensitivity. A

comparison of TCD with TEE found excellent concor-

dance between the two studies in evaluating right-to-left

shunt [51]. Although most right-to-left shunts occur via a

PFO, one concern with TCD is that it does not provide

anatomic imaging of the heart and cannot distinguish an

intrapulmonary from an intracardiac shunt. In addition, it

does not provide information regarding the presence of an

atrial septal aneurysm, which, in combination with a

PFO, confers risk for stroke and stroke recurrence

[52,53]. TCD remains an appropriate initial screening

tool for PFO, as it is noninvasive.

Persons with migraine headaches, particularly those pre-

ceded by an aura, commonly have a PFO [54–56,57�].

PFO closure resulted in a dramatic decrease in migraine

symptoms in one retrospective cohort study [58]. A large

prospective study called the Migraine Intervention with

STARFlex Technology (MIST) trial showed no benefit

to PFO closure versus sham procedure, however [59��].

TCD screening of migraineurs is therefore not recom-

mended at this point.
Cerebral vasospasm
Although in most situations changes in flow velocity as

detected by TCD indicate proportional changes in flow,

cerebral vasospasm following subarachnoid hemorrhage

(SAH) is the exception to this paradigm. Breakdown of

blood in this space damages vessels and causes a decrease

in vascular diameter. The correlation between flow

velocity and flow is lost. As flow velocities increase,

cerebral perfusion may be preserved or compromised.

Despite therapy with nimodipine, volume loading,

induced hypertension, and angioplasty, many patients

develop delayed ischemic neurologic deficit. Cerebral

angiography is the gold standard for diagnosing cerebral

vasospasm, but TCD has become an important tool to

detect its onset, location, severity, and response to

therapy. TCD was first used for this purpose by Aaslid

et al. [60] in 1984.

Numerous studies have evaluated flow velocity criteria

for the diagnosis of vasospasm in each of the basal

cerebral arteries [61–65]. In addition, the Lindegaard
opyright © Lippincott Williams & Wilkins. Unauth
index [66], the ratio of the MCA flow velocity to the

extracranial ICA flow velocity, was developed to dis-

tinguish true vasospasm from hyperdynamic flow. In

vasospasm, the flow velocity should be elevated only

in the intracranial vessel, and the index will be high,

whereas a hyperdynamic state would be expected to

increase velocity in all vessels, with little change in the

index. A meta-analysis evaluated the sensitivity and

specificity of TCD in the diagnosis of vasospasm and

found some variability between the vessels in question

[67]. The data on the MCA were most extensive and

found high specificity and positive predictive value (99

and 97%, respectively) for the diagnosis of spasm with

TCD but a somewhat lower sensitivity and negative

predictive value (67 and 78%, respectively). For most

of the studies evaluated in this meta-analysis, a cutoff of

120 cm/s was used as the threshold for MCA vasospasm.

Detailed criteria have also been developed to diagnose

basilar artery vasospasm using a posterior circulation

index, in which the ratio of the basilar artery and extra-

cranial vertebral artery is calculated [68]. Although this

ratio was originally described by Sloan et al. [69] in a

nonpeer-reviewed article, and utilized further by Soustiel

et al. [70], its role in aneurysmal SAH is most clearly

defined by Sviri et al. [68]. This ratio typically becomes

concerning with values in the 2–3 range. In fact, a ratio

higher than 3 in combination with a basilar artery velocity

greater than 85 cm/s had a 92% sensitivity and 97% speci-

ficity for 50% or greater narrowing of the basilar artery.

A recent evidence-based assessment of the literature on

the use of TCD supported its application in monitoring

for vasospasm following SAH, particularly for vasospasm

in the middle cerebral and basilar arteries [71].

Causes of acute neurological deterioration in patients

with SAH other than cerebral vasospasm include further

hemorrhage, cerebral edema, hydrocephalus, and even

cerebrospinal fluid hypovolemia [72]. Although a com-

puted tomography (CT) scan of the head is essential in

the diagnosis, TCD may give clues to the diagnosis of

subacute changes, however. Elevated intracranial pres-

sure from cerebral edema or hydrocephalus increases the

pulsatility index [73,74]. TCD may therefore be useful to

guide further workup when the diagnosis is unclear.
Traumatic brain injury
Traumatic brain injury (TBI) is one area in which TCD

has many applications. As mentioned earlier, the pulsa-

tility of the TCD waveform correlates well with intra-

cranial pressure (ICP), allowing TCD to be used for an

instantaneous look at cerebral hemodynamics when an

ICP monitor has not yet been placed or is contraindicated

due to coagulopathy [73,74]. Furthermore, TCD can

demonstrate cerebral circulatory arrest (discussed later)
orized reproduction of this article is prohibited.
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and guide therapeutic manipulation of intracranial pres-

sure and mean arterial pressure. In addition, it may

provide some prognostic information; low flow velocities

in the MCA (<40 cm/s) and high pulsatility indices (>1.5)

correlate with poor 6-month outcome [75]. One study

advocates TCD evaluation of TBI patients with adjust-

ment of cerebral perfusion pressure based on flow

velocity and pulsatility index in order to minimize

TBI-associated cerebral hypoperfusion [76�].

Blunt head and neck trauma may cause cervical artery

dissection, which confers risk for subsequent stroke [77].

Therapy includes antiplatelet agents to prevent throm-

boembolic stroke. TCD can be used to detect emboli and

their resolution with antiplatelet therapy, with unknown

effect on outcome.

Finally, autoregulation testing can be performed in this

patient population. Cerebral autoregulation may be

impaired by even mild TBI and is associated with worse

outcome in both adult and pediatric patients with TBI

[78–80]. Testing autoregulation provides information

that may be used to guide management of these patients.

Although no literature exists to support such practice, it

may be reasonable to delay some surgical procedures in

these patients while autoregulation is impaired.

Cerebral autoregulation has a dynamic aspect, that is, how

quickly cerebral blood flow is corrected once blood pres-

sure changes, and a static aspect, that is, how close to

baseline flow returns once a new stable blood pressure has

been achieved. The quintessential dynamic autoregula-

tion study is the thigh cuff test popularized by Aaslid et al.
[81]. This method entails inflating bilateral thigh cuffs to

greater than systolic pressure, which, when released, effect

a drop in systemic pressure and a fall in TCD-measured

flow velocities. The rate of return of cerebral blood flow is

then graded in a semi-quantitative fashion. Static auto-

regulation testing relies on steady-state measurements.

The classic example of this method is given by Tiecks

et al. [82], in which flow velocities at two different blood

pressures (or cerebral perfusion pressures) are used to

calculate an autoregulatory index (estimated percentage

change in cerebral vascular resistance divided by percen-

tage change in cerebral perfusion pressure). Whereas these

aforementioned techniques require intervention in the

participant’s blood pressure, passive methods for assessing

autoregulation rely on spontaneous fluctuations in pressure

correlated with continuous monitoring of either ICP or

some component of flow velocity. This method has been

used extensively by Czosnyka et al. [83]. In short, this

technique is based on the premise that swings in blood

pressure should not have concomitant swings in flow

velocity or ICP if autoregulation is intact, whereas these

parameters would have a positive correlation in the setting

of impaired autoregulation.
opyright © Lippincott Williams & Wilkins. Unautho
Other methods of assessing autoregulation using TCD

include the tilt test, which uses positional change to

effect a drop in pressure at the circle of Willis, as well

as carotid compression, which provides a transient hyper-

emia following release of the compression that correlates

with autoregulatory ability. A detailed discussion of these

techniques is available elsewhere [84,85].

Recent evidence has suggested that impairment of static

autoregulation in TBI is more predictive of poor outcome

than that of dynamic autoregulation [86��].
Liver failure
Fulminant hepatic failure is associated with cerebral

edema and intracranial hypertension of uncertain causes,

though ammonia and oxidative stress likely play a role

[87]. Therapeutic options for managing intracranial pres-

sure are limited (an overview is available in Tofteng and

Larsen [88]), and orthotopic liver transplant remains

the definitive therapy. Although intracranial pressure

monitors are commonly placed in these patients, their

use does not improve outcome and is associated with

complications due to the inevitable coexisting coagulo-

pathy [89]. This clinical setting appears to be well suited

to noninvasive estimation of cerebral perfusion pressure

with TCD as well as detection of cerebral circulatory

arrest in the deeply encephalopathic unexaminable

patient. Efforts have been made to characterize the

nature of flow velocity patterns in hepatic failure, but

as yet there are no clear data defining the utility of TCD

in this setting [90].

In addition to intracranial hypertension, these patients

often have impaired cerebral autoregulation that nor-

malizes with orthotopic liver transplantion [91]. Although

this is a curious phenomenon, the role of autoregulation

testing in this patient population is unclear.
Brain death
Although brain death remains a clinical diagnosis, a

confirmatory study is desired at times. Cerebral blood

flow velocities undergo a well recognized progression in

the context of brain death. As intracranial pressure

increases, pulsatility increases. Diastolic flow velocity

decreases and eventually reverses. At this point, the

patient may have no net antegrade cerebral blood flow.

The pattern may progress to brief systolic spikes and then

to unobtainable signals. A recent study has demonstrated

a specificity of 100% and sensitivity of 96.5% for TCD in

the diagnosis of brain death [92]. This is currently

accepted as a confirmatory test for brain death in many

centers. However, care must be taken to consider the

context in which these flow velocity patterns are

recorded. Certain conditions can create diastolic flow
rized reproduction of this article is prohibited.
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reversal without brain death. Patent ductus arteriosus,

severe aortic insufficiency, and intraaortic balloon pump

support may all result in a similar pattern of cerebral

blood flow [93,94].
Conclusion
According to the aforementioned evidence-based review

of TCD, the best indications for its use are stroke pre-

vention in the setting of pediatric patients with sickle cell

disease and monitoring for vasospasm in aneurysmal SAH

[71]. Although many of the other applications of TCD

currently lack definitive evidence to their effect on

patient outcome, clarification of the value of TCD in

these situations is certainly to be expected from studies

that could be completed in the near future. Furthermore,

the lack of evidence for outcome benefit with respect to a

noninvasive monitor does not suggest it is without use

[95].
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Ract C, Le Moigno S, Bruder N, Vigué B. Transcranial Doppler ultrasound
goal-directed therapy for the early management of severe traumatic brain
injury. Intensive Care Med 2007; 33:645–651.

This study suggests a therapy in TBI guided by TCD findings.

77 Arauz A, Hoyos L, Espinoza C, et al. Dissection of cervical arteries: long-term
follow-up study of 130 consecutive cases. Cerebrovasc Dis 2006; 22:150–
154.

78 Junger EC, Newell DW, Grant GA, et al. Cerebral autoregulation following
minor head injury. J Neurosurg 1997; 86:425–432.

79 Hiler M, Czosnyka M, Hutchinson P, et al. Predictive value of initial computer-
ized tomography scan, intracranial pressure, and state of autoregulation in
patients with traumatic brain injury. J Neurosurg 2006; 104:731–737.

80 Vavilala MS, Muangman S, Tontisirin N, et al. Impaired cerebral autoregulation
and 6-month outcome in children with severe traumatic brain injury: pre-
liminary findings. Dev Neurosci 2006; 28:348–353.

81 Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation
dynamics in humans. Stroke 1989; 20:45–52.

82 Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic
cerebral autoregulation measurements. Stroke 1995; 26:1014–1019.

83 Czosnyka M, Smielewski P, Czosnyka Z, et al. Continuous assessment of
cerebral autoregulation: clinical and laboratory experience. Acta Neurochir
Suppl 2003; 86:581–585.

84 Vavilala MS, Kincaid MS, Muangman SL, et al. Gender differences in cerebral
blood flow velocity and autoregulation between the anterior and posterior
circulations in healthy children. Pediatr Res 2005; 58:574–578.

85 Giller CA. A bedside test for cerebral autoregulation using transcranial
Doppler ultrasound. Acta Neurochir (Wien) 1991; 108:7–14.
opyright © Lippincott Williams & Wilkins. Unauth
86

��
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